Graphs of given genus and arbitrarily large maximum genus

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximum genus of diameter three graphs

The maximum gen'us of connected of orient able surface on which G has 2-ce11 C:U.UYC;UUULl.".. to 2,M(G) where (3(G) the Betti n'umber of G.

متن کامل

The maximum genus of vertex-transitive graphs

Graphs possessing a high degree of symmetry have often been considered in topological graph theory. For instance, a number of constructions of genus embeddings by means of current or voltage graphs is based on the observation that a graph can be represented as a Cayley graph for some group. Another kind of embedding problems where symmetrical graphs are encountered is connected with regular map...

متن کامل

Joint-Tree Model and the Maximum Genus of Graphs

The vertex v of a graph G is called a 1-critical-vertex for the maximum genus of the graph, or for simplicity called 1-critical-vertex, if G − v is a connected graph and γM (G − v) = γM (G) − 1. In this paper, through the joint-tree model, we obtained some types of 1-critical-vertex, and get the upper embeddability of the Spiral S m.

متن کامل

The maximum genus of graphs of diameter two

Skoviera, M., The maximum genus of graphs of diameter two, Discrete Mathematics 87 (1991) 175-180. Let G be a (finite) graph of diameter two. We prove that if G is loopless then it is upper embeddable, i.e. the maximum genus y,&G) equals [fi(G)/Z], where /3(G) = IF(G)1 IV(G)1 + 1 is the Betti number of G. For graphs with loops we show that [p(G)/21 2s yM(G) c &G)/Z] if G is vertex 2-connected, ...

متن کامل

Lower bounds for the maximum genus of 4-regular graphs∗

This paper investigates the maximum genus and upper embeddability of connected 4-regular graphs. We obtain lower bounds on the maximum genus of connected 4-regular simple graphs and connected 4-regular graphs without loops in terms of the Betti number. The definition of the Betti number is referred to [Gross and Tucker, Topological Graph Theory, New York, 1987]. Furthermore, we give examples th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1973

ISSN: 0012-365X

DOI: 10.1016/0012-365x(73)90047-2